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We discuss the critical behaviour of structure factors at a quantum phase 
transition, for quantum spin models at temperature T = 0. The theory is 
reviewed, and compared with exact or numerical results for various specific 
models. The differing behaviour of the 1-particle residue and structure 
functions are highlighted. 

 
1. Introduction 

Modern probes of material properties, such as the new inelastic neutron scattering 
facilities, are reaching such unprecedented sensitivity that they can measure the spectrum not 
only of a single quasiparticle excitation, but even two-particle excitations (see e.g.  [1]). These 
quasiparticles can collide, scatter, or form bound states just like elementary particles in free 
space. The spectrum of the multiparticle excitations is a crucial indicator of the underlying 
dynamics of the system. 

The experiments measure scattering cross-sections, which are proportional to the 
appropriate ‘structure factor’ for the system or material at hand. It is therefore of particular 
interest to explore the critical behaviour of these structure factors in the vicinity of a quantum 
phase transition. We compare the theoretical predictions with some exact analytic results and 
numerical calculations for various models. We will only consider temperature T=0. 
 
2.  Review of Theory 

The neutron scattering cross section is proportional to the dynamical structure factor [2]                         
Sαγ (k,ω) =  1/2πN ∑ ∫∞ dt exp[i(ωt-k.(rj-ri))] < Sα

j(t)Sγ
i(0) >0                (1)  

                                                   i,j  -∞ 
where α,γ label Cartesian components of the spin operator Si at site i, N is the number of 
lattice sites, and the angular bracket denotes the ground-state expectation value. Introduce a 
complete set of energy eigenstates |n> in equation (1) and integrate over time to obtain a sum 
over ‘exclusive’ structure factors or ‘spectral weights’ Sαγ

n,  
Sαγ(k,ω) = ∑ Sαγ

n(k,ω),  Sαγ
n(k,ω) = 1/N ∑ δ(ω-En+E0) |∑<ψn|Sγ

i|ψ0> exp[ik.ri]|2 (2) 
                       n                                                      n                       i 

where En is the energy of the nth eigenstate, and |ψ0> is the ground state (here we assume Sα 
and Sγ are Hermitian conjugates). The intermediate states n can be classified into 1-particle, 2-
particle or many-particle states. Integrating over energy gives the `integrated' or ‘static’ 
structure factor, the spatial Fourier transform of the 2-spin correlator at equal times: 

Sαγ(k) = ∫- ∞
∞ dω Sαγ(k,ω) = 1/N ∑ exp[ik.(ri-rj)] < Sα

j Sγ
j >.   (3) 

                                                                         i,j   
Critical Behaviour near a Quantum Phase Transition 

Now let us suppose that a quantum spin model undergoes a quantum phase transition as 
a function of some coupling λ at temperature T=0. In the continuum approximation near the 
critical point, equation (3) reduces to 

Sαγ(k) = ∫ ddr exp[[ik.r] < Sα(r)Sγ(0) >0      (4) 
where d is the number of spatial dimensions. The oscillating factor exp[ik.r] will kill off the 
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contributions from large distances unless it is compensated by a corresponding oscillation 
exp[-ik0.r] in the correlation function. Then we can write 

Sαγ(k) = ∫ ddr exp[iq.r] g(r)        (5) 
where  q = k-k0 , and g(r) is a smooth function. Scaling theory then tells us that in the vicinity 
of the critical point g(r) ~ r-(d+z-2+η) f(r/ξ), where ξ is the correlation length, and z is the 
dynamic critical exponent. Hence one can show that as the coupling λ → λc, corresponding to 
a quantum phase transition, we expect 

Sαγ(k0) ~ |λc – λ|-(2-z-η)ν.       (6) 
For the 1-particle exclusive structure factor, Sachdev [3] shows the following, assuming 
relativistic invariance of the effective field theory (i.e. z =1), which applies to many though 
not all models. Let the 1-particle energy be E(k) = √(c2k2 + Δ2) near the critical point, then we 
can write the dynamic structure factor for the 1-particle state 

Sαγ
1p(k,ω) =  Aαγ(k)/(2E(k)) δ(ω-E(k))      (7) 

and hence the static structure factor 
Sαγ

1p(k) =  ∫- ∞
∞ dω Sαγ 

1p(k,ω)  = Aαγ(k)/(2E(k))      (8) 
where Aαγ(k) is the 1-particle residue function, which in general may be a function of k. From 
renormalization group theory, the scaling dimension of the residue function is expected to be 
dim[Aαγ] = η, or in other words we expect near the critical point Aαγ(k0) ~ |λc – λ|ην, E(k0) ~ 
|λc – λ|ν, and hence Sαγ

1p(k) ~ |λc – λ|−(1−η)ν, just as for the total structure factor (recall here 
z=1). In many cases, the 1-particle contribution will dominate the structure factor, but this is 
not always true, as we shall see. 
 
3. Comparison with Exact Results 

The transverse Ising chain model is exactly solvable, and expressions for the energy 
spectrum, magnetization, etc. have been given by Pfeuty [4]. Our aim is to confirm the scaling 
behaviour of the structure factors for this model. In the disordered phase, the Hamiltonian for 
the model can be written as 

H = ∑ (1-σz
i) - λ  ∑  σx

i σx
j         (9) 

                           i                   <ij>          
where the σα

i  = 2Sα
i are Pauli operators and the second sum is over nearest neighbour pairs. 

The critical point lies at λ = 1, and the 1-particle energy is 
E(k) = 2Λ(k) = 2[1+λ2-2λ cos (k)]1/2,      (10) 

so that the ‘critical wavevector’ is k0 = 0 and the energy gap is Δ = 2(1-λ). The 1-particle 
exclusive structure factors have been discussed by Hamer et al. [5]. From the results of 
Vaidya and Tracy [6], one can obtain the 1-particle contributions to the structure factors: 

Sxx
1p(k) = (1-λ2)1/4/(4Λ(k)),   Syy

1p(k) = (1-λ2)1/4Λ(k)/4 .   (11) 
In the vicinity of λ → 1, k → 0, the 1-particle structure factor Sxx

1p(k) ~ (1-λ)-3/4 , which 
agrees with the expected scaling form (c.f. equation (6)), with d=1, z=1, η = 1/4, the 
transverse Ising model values. The other transverse structure factor Syy

1p(k) ~ (1-λ)5/4 , and has 
a sub-leading critical index, two powers of Δ smaller than Sxx

1p. The quasiparticle residue for 
the dominant spectral weight Sxx at k=0 is independent of k in this case: 

A(k)  =  (1-λ2)1/4 ~ [2(1-λ)]1/4  ,  λ → 1,      (12) 
 
4. Comparison with Numerical Results 
The Alternating Heisenberg Chain 

Schmidt and Uhrig [7] and Hamer et al. [8] have investigated the spectral weights of 
the  alternating Heisenberg chain, which can be described by the following Hamiltonian 

H =  ∑ (S2i . S2i+1 + λ S2i-1 . S2i)        (13) 
                                      i 
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where the Si are  spin-1/2 operators at site i, and λ is the alternating coupling. Here we assume 
that the distance between two successive dimers is d. At λ = 0, the system consists of a chain 
of decoupled dimers, and in the ground state each dimer is in a singlet state. Excited states are 
made up from the three triplet excited states on each dimer, with a finite energy gap between 
the singlet ground state and the triplet excited states. This scenario is believed to hold right up 
to the uniform limit λ = 1, which corresponds to a critical point. At λ = 1, we regain the 
uniform Heisenberg chain, which is gapless. 

Analytic studies of the critical behaviour near λ = 1 indicate that the ground-state 
energy per site ε0(λ), and the energy gap Δ(λ) should behave as 

ε0(λ) - ε0(1) ~  δ4/3/|ln(δ/δ0)|,   Δ(λ) ∼ δ2/3/√|ln(δ/δ0)|,    (14) 
as λ → 1, where δ = (1−λ)/(1+λ). This corresponds to critical exponents α = 2/3 , ν = 2/3. 
The logarithmic terms in (14) are due to the existence of a marginal variable in the model. For 
the uniform chain λ = 1, and near kd → 2π, Affleck [9] has obtained expressions for the 
correlation functions in the model, which correspond to an exponent η = 1: note that in this 
case (1−η)ν = 0, so there is no power-law divergence in the structure factor, but rather a 
logarithmic one. This implies that for kd = 2π and as λ → 1, the asymptotic form for S(2π) 
diverges as S(2π) ~ [- ln (1-λ)]3/2, λ → 1. For 0 < kd < 2π, one expects S to be finite for any 
λ. 

For fixed values of k, Fig. 1 shows the integrated structure factor S versus λ. The 
logarithmic divergence as λ → 1 for the case kd = 2π is clearly evident. For wavevectors 
other than 2π, an analysis of the series for the 1-particle structure factor S-+

1p using Dlog Padé 
approximants by Schmidt and Uhrig [7] appeared to show that it vanishes with a behavior 
close to (1−λ)1/3. Since S remains finite, one would thus expect that S1p/S vanishes like 
(1−λ)1/3. If the residue function A(k) behaved in the same way as at kd = 2π, however, we 
would expect it to vanish with exponent ην = 2/3.  

 
 

 
 
     Figure 1. The integrated structure factor S for 
the alternating chain versus λ for kd = π/2, π, 3π/2 
and 2π. From Ref. [8]. 
 

 
 
Figure 2. The total static structure factor S(k) for 
the bilayer model as a function of k at various 
couplings λ = J1/J2. From Ref. [10]. 
 

Heisenberg Bilayer Model 
As our final example, we consider the Heisenberg bilayer antiferromagnet on the 

square lattice, with Hamiltonian 
H = J1 ∑   ∑ Smi . Smj  +  J2 ∑ S1i . S2i       (15) 

                                                          m=1,2 <ij> 
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where m = 1,2 labels the two planes of the bilayer. The physics then depends on the coupling 
ratio λ = J1/J2. At λ = 0, the ground state consists of S = 0 dimers on each bond between the 
two layers, and the excitations are S = 1 ‘triplon’ states on bonds. At large λ the ground state 
will be a standard Néel state, with S = 1 ‘magnon’ excitations. At some intermediate critical 
value λc, a phase transition will occur between these two phases.  

Figure 2 shows some series results for the total static transverse structure factor S(k) ≡ 
S+-(k) as a function of k at various couplings λ  = J1/J2. All results are for kz = π, probing 
intermediate states antisymmetric between the planes, and we only refer to k = (kx,ky) 
hereafter. The critical point is estimated as λc = 0.3942.  The dominant feature is a large peak 
at the Néel point k = (π,π), which appears to become divergent as λ → λc, as we would 
expect. From scaling theory, both the 1-particle structure factor and the total structure factor 
in the vicinity of the critical point should scale like (λc - λ)(η−1)ν, at the critical (Néel) 
momentum. We expect this transition to belong to the universality class of the O(3) model in 
3 dimensions, which has critical exponents ν = 0.707(4), η = 0.036(3), hence we expect 
(η−1)ν = -0.682(5), which is quite compatible with the numerical estimates. 

How does S1p behave at the critical coupling away from the Néel momentum? Here the 
behaviour is quite different from the previous models. The ratio S1p/S decreases smoothly 
towards the critical coupling, but shows no sign of vanishing there. In fact the 1-particle 
structure factor is dominant everywhere, remaining at 80% of the total or more.  
 
4. Conclusions 

We have focused here on quantum spin models, but the conclusions should apply more 
generally. The structure factors at the ‘critical wavevector’ generally conform with theoretical 
expectations. At general wavevectors, however, the 1-particle residue functions and structure 
factors show quite distinct differences for the various models. For the exactly solvable 
transverse Ising chain, the residue function is independent of wavevector, and the 1-particle 
structure factor vanishes at the critical point with exponent ην for all noncritical wavevectors. 
For the alternating Heisenberg chain, the 1-particle structure factor vanishes similarly, but 
with an exponent apparently different from ην. Finally, for the bilayer Heisenberg model, the 
renormalized residue function and the 1-particle structure function remain finite at the critical 
point, everywhere except at the critical wavevector, and the 1-particle state dominates the 
total structure factor. The ‘triplon’ state smoothly continues into the ‘magnon’ state across the 
transition in this case. 
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